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Abstract

The output spectrum of a linear dynamic system can be expressed as the input spectrum multiplied by the system

frequency response function. This well-known relationship analytically exposes the effects of the system parameters on the

output frequency response. In this paper, the extension of this relationship to the nonlinear case is investigated via a case

study where an analytical relationship between the output frequency response and the nonlinear damping characteristic

parameters is derived for a sdof spring damper system. The analysis is based on the frequency domain analysis of nonlinear

systems, and the basic idea can be extended to general situations. Simulation studies are included to verify the theoretical

analysis and demonstrate the effectiveness of the new relationship. The results provide an important basis for the analytical

study and the design of nonlinear engineering systems and structures in the frequency domain.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The output frequency response of engineering systems has been widely applied in many fields to investigate
and study system behaviours. If the underlying system is linear the relationship between the system output
frequency response and the input is well known; the output spectrum Y(jo) is equal to the input spectrum
U(jo) multiplied by the system frequency response function (FRF) H(jo). The simple linear frequency domain
relationship Y ðjoÞ ¼ HðjoÞUðjoÞ analytically describes the effect of system properties on the output frequency
response. This analytical relationship has been applied in control engineering for systems analysis and
controller design, in electronics and communications for the synthesis of analogue and digital filters, and in
mechanical and civil engineering for the analysis of vibrations.

Nonlinear systems have been widely studied by many authors and significant progress towards
understanding these systems has been made. Many of these studies have been based in the time domain
with results relating to the Volterra series [1–3], NARMAX (Nonlinear AutoRegresive Moving Average with
eXogenous input) models [4,5], neural networks and fuzzy systems [6], and classical nonlinear models such as
the Duffing equation [7,8] and the Van der Pol oscillator [9]. The study of nonlinear systems in the frequency
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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domain is based on the concept of generalised frequency response functions (GFRFs) [10] that extend the
linear FRF concept to the nonlinear case. Many studies in the frequency domain have focused on system
modelling which involves the determination of the GFRFs from input–output data or the establishment of
system frequency domain models from input–output spectra [11–16]. The output frequency response of
nonlinear systems was recently studied by Lang and Billings [17–19] and Billings and Lang [20–22]. These
studies extended the above basic linear relationship between the input and output spectra and introduced
explicit relationships between input and output frequencies of nonlinear systems. Based on these relationships,
Billings and Lang [23] proposed the concept of energy transfer filters and developed a general procedure for
the design of energy transfer filters which can be implemented using the NARX (Nonlinear AutoRegressive
with eXogenous input) model with input nonlinearities.

Unlike linear systems, the relationship between the input and output spectra of nonlinear systems is much
more complicated. The relationship involves complex multidimensional integration known as association of
variables and a summation with a possibly infinite number of terms [2]. This complicates the effect of the
system parameters on the output frequency response. Consequently, the linear system frequency domain
analysis and design approaches cannot easily be extended to the nonlinear case.

In this paper a case study is conducted based on a single-degree-of-freedom (sdof) spring damper system
with a nonlinear damping characteristic. An analytical relationship between the system output frequency
response and the characteristic parameters of the system damping nonlinearity is derived, for the first time,
using the frequency domain theories of nonlinear systems. The results explicitly reveal how the system output
frequency response depends on the damping characteristic parameters which define the system nonlinearity.
Simulation studies are performed to evaluate the accurate system output frequency response for different
linear and nonlinear damper parameters and different input frequencies and magnitudes, and to compare
these with the analytically determined results. The results verify the effectiveness and significance of the
theoretical derivations. The study is focused on a relatively simple sdof system to demonstrate the idea of the
approach, but the results can be extended to general cases. The work provides an important basis for the
analytical study and the design of nonlinear engineering systems in the frequency domain.
2. System description

In order to demonstrate the analysis of the effects of system nonlinearities on the output frequency
response, a simple sdof system will be considered, as shown in Fig. 1. The mass, m, supported on the nonlinear
damper and parallel spring, is subject to a harmonic disturbance of amplitude, Fd, and frequency, O. The
nonlinear damping effect is described by a third-order polynomial [29] such that

f ð:Þ ¼ a1ð:Þ þ a2ð:Þ
2
þ a3ð:Þ

3, (1)
m 

k

u1(t)=Fdsin�t

Fs(t) 

x(t)

f(.) 

Fig. 1. The single degree of freedom spring damper system considered in the study.
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where a1, a2, a3 are the parameters of the damping characteristic, and a2 and a3 represent the system
nonlinearity. The analysis of the effects of the parameters a2 and a3 on the system output frequency response is
the focus of the present study. The spring with characteristic parameter k in parallel with the nonlinear damper
f(.) provides an isolation between the disturbance force, Fd sinOt, and the force transmitted to the support,
Fs(t).

The equilibrium equation for the system in Fig. 1, and the corresponding force at the support, can be
expressed as

m €xðtÞ þ a1 _xðtÞ þ a2 _x
2ðtÞ þ a3 _x

3ðtÞ þ kxðtÞ ¼ Fd sin Otð Þ, (2)

F sðtÞ ¼ a1 _xðtÞ þ a2 _x
2ðtÞ þ a3 _x

3ðtÞ þ kxðtÞ. (3)

For convenience of analysis, denote

y1ðtÞ ¼ xðtÞ, (4)

y2ðtÞ ¼ F sðtÞ (5)

and

u1ðtÞ ¼ Fd sinðOtÞ. (6)

The system can then be described by a single input two output system:

m €y1ðtÞ þ a1 _y1ðtÞ þ a2 _y
2
1ðtÞ þ a3 _y

3
1ðtÞ þ ky1ðtÞ ¼ u1ðtÞ, (7)

y2ðtÞ ¼ a1 _y1ðtÞ þ a2 _y
2
1ðtÞ þ a3 _y

3
1ðtÞ þ ky1ðtÞ. (8)

What is interesting in this study is how the spectrum of the second system output y2(t) depends on the
parameters a2,a3 of the nonlinear damping characteristic f(.). Although this appears to be a relatively simple
problem, surprisingly, there are no results in the literature that can address this fundamental problem. The
reason for this omission is the complexity that is introduced by the nonlinearities even for this apparently
simple system. The objective therefore is to establish an analytical relationship between the output spectrum
and the system parameters.

3. Volterra modelling of the system in the time and frequency domain

The output y(t) of a single input single output analytical system can be expressed as a Volterra functional
polynomial of the input u(t) [24] to give

yðtÞ ¼
XN

n¼1

yðnÞðtÞ, (9)

where N is the maximum order of the system nonlinearity. The nth order output of the system y(n)(t) is given by

yðnÞðtÞ ¼

Z 1
�1

. . .

Z 1
�1

hn t1; . . . ; tnð Þ
Yn

i¼1

uðt� tiÞ dti; n40 (10)

and hn(t1,y,tn) is a real valued function of t1,y,tn called the nth order impulse response function or Volterra
kernel of the system.

The multidimensional Fourier transform of the nth order impulse response function yields the nth order
transfer function or GFRF

Hnðjo1; . . . ; jonÞ ¼

Z 1
�1

. . .

Z 1
�1

hn t1; . . . ; tnð Þe�j o1t1þ...þontnð Þ dt1 . . . dtn. (11)
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Using the concept of GFRF, the relationship between the input spectrum U(jo) and the output spectrum
Y(jo), that is the frequency domain input–output description of the system, can be obtained as [17]

Y ðjoÞ ¼
XN

n¼1

1=
ffiffiffi
n
p

2pð Þn�1

Z
o1þ���þon¼o

Hnðjo1; . . . ; jonÞ
Yn

i¼1

UðjoiÞ dson, (12)

where
R
o1þ���þon¼o

ð:Þ dson denotes the integration of (.) over the n-dimensional hyperplane o1 þ . . .þ on ¼ o.
When the system is subject to a multi-tone input such that

uðtÞ ¼
XK

i¼1

Aij j cosðoitþ ffAiÞ. (13)

Lang and Billings [17] showed that Eq. (12) can be expressed as

Y ðjoÞ ¼
XN

n¼1

1

2n

X
ok1
þ���þokn¼o

Hn jok1
; . . . ; jokn

� �
Aðok1

Þ . . .Aðokn
Þ, (14)

where

kl 2 �K ; . . . ;�1; 1; . . . ;Kf g; l ¼ 1; . . . ; n,

AðoÞ ¼
Akj je

jffAk if o 2 ok; k ¼ �1; . . . ;�Kf g;

0 otherwise;

(

o�k ¼ �ok

and

A�kj jejffA�k ¼ Akj je
�jffAk

The extension of the above theoretical results to the single input multiple output nonlinear system case
is straightforward. The results in the time domain, which are an extension of Eqs. (9) and (10), are given in
Refs. [25,26]

yj1
ðtÞ ¼

XN

n¼1

y
ðnÞ
j1
ðtÞ; j1 ¼ 1; 2; . . . ;M ðMX2Þ, (15)

where

y
ðnÞ
j1
ðtÞ ¼

Z 1
�1

. . .

Z 1
�1

hn j1; 1
ðnÞ; t1; . . . ; tn

� �Yn

i¼1

u1ðt� tiÞ; dti j1 ¼ 1; 2; . . . ;M (16)

and hn j1; 1
ðnÞ; t1; . . . ; tn

� �
is the nth order Volterra kernel of the system corresponding to the j1th output. The

results in the frequency domain, which are an extension of Eqs. (12) and (14), are

Y j1ðjoÞ ¼
XN

n¼1

1=
ffiffiffi
n
p

2pð Þn�1

Z
o1þ...þon¼o

Hnðj1; 1
ðnÞ; jo1; . . . ; jonÞ

Yn

i¼1

UðjoiÞ dson; j1 ¼ 1; 2; . . . ;M (17)

and

Y j1 ðjoÞ ¼
XN

n¼1

1

2n

X
ok1
þ...þokn¼o

Hn j1; 1
ðnÞ; jok1

; . . . ; jokn

� �
Aðok1

Þ . . .Aðokn
Þ; j1 ¼ 1; 2; . . . ;M, (18)

where

Hnðj1; 1
ðnÞ; jo1; . . . ; jonÞ ¼

Z 1
�1

. . .

Z 1
�1

hn j1; 1
ðnÞ; t1; . . . ; tn

� �
e�j o1t1þ...þontnð Þ dt1 . . . dtn (19)

is the nth order GFRF of the system corresponding to the j1th output.
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It is obvious that the Volterra time domain model of the system (2) and (3) is given by Eq. (15) with M ¼ 2,
and the output frequency response of the system when subject to the input in Eq. (6) is given by Eq. (18) with
M ¼ 2,

kl 2 �1;þ1f g; l ¼ 1; . . . ; n, (20)

AðoÞ ¼
Akj je

jffAk if o 2 ok; k ¼ �1f g; where A�1j j ¼ F d ; o�1 ¼ �O; and ffA�1 ¼ �p=2;

0 otherwise:

(
(21)

This is the starting point for the derivation of an analytical expression for the effects of nonlinearity on the
output frequency response of the system (2) and (3).

4. The effects of system nonlinearity on the output frequency response

The focus of this section is to investigate the effects of the nonlinear damping characteristic of the system (2)
and (3) on the output frequency response when the system is subject to a multi-tone or a harmonic input under
the condition that the system can be described by the frequency domain Volterra model (18) where M ¼ 2.
This study involves two steps. First the GFRF matrices of the system

Hnð1; 1
ðnÞ; jo1; . . . ; jonÞ; Hnð2; 1

ðnÞ; jo1; . . . ; jonÞ
� �

; n ¼ 1; 2; 3; . . .

are derived using the probing method [27]. Then an analytical relationship between the system output
frequency response Y2(jo) and the parameters of the nonlinear damping characteristic is determined.

4.1. The probing method

Given a parametric model of a nonlinear system, the GFRFs of the system can be derived analytically using
the probing method. In the case of single input single output nonlinear systems, the basic idea of the probing
method can be introduced as below.

It was shown by Rugh [2] that for nonlinear systems which are described by the Volterra model (9) and (10)
and excited by a combination of exponentials

uðtÞ ¼
XR

i¼1

ejoi t; 1pRpN, (22)

the output response can be written as

yðtÞ ¼
XN

n¼1

XR

i1¼1

� � �
XR

in¼1

Hn joi1 ; . . . ; join

� �
ejðoi1

þ...þoin Þt

¼
XN

n¼1

X
mðnÞ

Gm1ðnÞ...mRðnÞ jo1; . . . ; joRð Þej m1ðnÞo1þ...þmRðnÞoR½ �t; ð23Þ

where
P
mðnÞ

indicates a R-fold sum over all integer indices m1(n),y,mR(n) such that

0pmiðnÞpn; m1ðnÞ þ . . .þmRðnÞ ¼ n; and

Gm1ðnÞ...mRðnÞ jo1; . . . ; joRð Þ ¼
n!

m1ðnÞ! � � �mRðnÞ!
Hnðjo1; . . . ; jo1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

m1ðnÞ

; . . . ; joR; . . . ; joR|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
mRðnÞ

Þ. (24)

Notice that in Eq. (24) when n ¼ R, miðnÞ ¼ 1; i ¼ 1; . . . ;R, therefore

Gm1ðRÞ...mRðRÞ jo1; . . . ; joRð Þ ¼ R!HRðjo1; . . . ; joRÞ. (25)
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Considering Eq. (25), Eq. (23) can be written as

yðtÞ ¼
XN

n¼1;naR

X
mðnÞ

Gm1ðnÞ...mRðnÞ jo1; . . . ; joRð Þej m1ðnÞo1þ...þmRðnÞoR½ �t

þ R!HR jo1; . . . ; joRð Þej o1þ...þoRð Þt. ð26Þ

For nonlinear systems which have a parametric model with parameter vector y:

yðtÞ ¼ f 0ðt; y; yðtÞ; uðtÞÞ (27)

and which can also be described by the Volterra model (9) and (10), substituting Eqs. (22) and (26) into
Eq. (27) for y(t) and u(t), and extracting the coefficient of ej o1þ...þoRð Þt from the resulting expression produces
an equation from which the GFRF HR(jo1,y,joR) can be obtained.

For single input multiple output systems, which are described by the Volterra model (15) and (16), and
excited by input (22), it can be shown, based on the same idea as used for the single input single output system
case above, that the output response is given by

yj1
ðtÞ ¼

XN

n¼1;naR

X
mðnÞ

Gm1ðnÞ...mRðnÞ j1; 1
ðnÞ; jo1; . . . ; joR

� �
ej m1ðnÞo1þ...þmRðnÞoR½ �t

þ R!HR j1; 1
ðRÞ; jo1; . . . ; joR

� �
ej o1þ...þoRð Þt j1 ¼ 1; 2; . . . ;M. ð28Þ

where

Gm1ðnÞ...mRðnÞ j1; 1
ðnÞ; jo1; . . . ; joR

� �
¼

n!

m1ðnÞ! . . .mRðnÞ!
Hnðj1; 1

ðnÞ; jo1; . . . ; jo1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
m1ðnÞ

; . . . ; joR; . . . ; joR|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
mRðnÞ

Þ. (29)

If the system is of a single input and two outputs and can be described by the parametric model

y1ðtÞ ¼ f 1ðt; y; y1ðtÞ; y2ðtÞ; u1ðtÞÞ;

y2ðtÞ ¼ f 2ðt; y; y1ðtÞ; y2ðtÞ; u1ðtÞÞ;

(
(30)

then substituting u1ðtÞ ¼
PR

i¼1e
joi t, and y1(t) and y2(t) given by Eq. (28) into Eq. (30), and extracting the

coefficient of ej o1þ...þoRð Þt from the resulting expressions produces two coupled equations for which the GFRF
matrix

HRð1; 1
ðRÞ; jo1; . . . ; joRÞ; HRð2; 1

ðRÞ; jo1; . . . ; joRÞ
� �

can be obtained.

4.2. Derivation of the system GFRF matrices

Following the probing method for single input two output systems introduced above, the GFRF matrices of
the system (2) and (3) can be determined. The detailed derivation for the GFRF matrices up to third order is
given below to demonstrate how the probing method is applied to achieve this objective.

To determine the first-order GFRF matrix

H1ð1; 1
ð1Þ; jo1Þ; H1ð2; 1

ð1Þ; jo1Þ
� �

,

the probing input

u1ðtÞ ¼ ejo1t (31)

is used and, by taking M ¼ 2 and R ¼ 1, Eq. (28) can be written as

y1ðtÞ ¼ H1ð1; 1
ð1Þ; jo1Þe

jo1t þ . . . ;

y2ðtÞ ¼ H1ð2; 1
ð1Þ; jo1Þe

jo1t þ . . . :

(
(32)



ARTICLE IN PRESS
Z.Q. Lang et al. / Journal of Sound and Vibration 295 (2006) 584–601590
Substituting Eqs. (31) and (32) into Eqs. (7) and (8) for u1(t), y1(t), and y2(t), and extracting the coefficient of
ej o1ð Þt from the resulting expressions yields two equations for ½H1ð1; 1

ð1Þ; jo1Þ; H1ð2; 1
ð1Þ; jo1Þ� which can be

expressed in a matrix form such that

mðjo1Þ
2 1

�k � a1ðjo1Þ 1

" #
H1ð1; 1

ð1Þ; jo1Þ

H1ð2; 1
ð1Þ; jo1Þ

" #
¼

1

0

� �
. (33)

Consequently the first-order GFRF matrix is determined as

H1ð1; 1
ð1Þ; jo1Þ

H1ð2; 1
ð1Þ; jo1Þ

" #
¼

1
	

mðjo1Þ
2
þ a1jo1 þ k

� �
ða1jo1 þ kÞ

	
mðjo1Þ

2
þ a1jo1 þ k

� �" #
. (34)

To determine the second-order GFRF matrix

H2ð1; 1
ð2Þ; jo1; jo2Þ; H2ð2; 1

ð2Þ; jo1; jo2Þ

 �

,

the probing input

u1ðtÞ ¼ ejo1t þ ejo2t (35)

is used and, by taking M ¼ 2 and R ¼ 2, Eq. (28) can be written as

y1ðtÞ ¼ H1ð1; 1
ð1Þ; jo1Þe

jo1t þH1ð1; 1
ð1Þ; jo2Þe

jo2t þ 2H2ð1; 1
ð2Þ; jo1; jo2Þe

jðo1þo2Þt þ . . . ;

y2ðtÞ ¼ H1ð2; 1
ð1Þ; jo1Þe

jo1t þH1ð2; 1
ð1Þ; jo2Þe

jo2t þ 2H2ð2; 1
ð2Þ; jo1; jo2Þe

jðo1þo2Þt þ . . . :

(
(36)

Substituting Eqs. (35) and (36) into Eqs. (7) and (8) for u1(t), y1(t), and y2(t), and extracting the co-
efficient of ej o1þo2ð Þt from the resulting expressions yields two coupled equations for ½H2ð1; 1

ð2Þ;
jo1; jo2Þ; H2ð2; 1

ð2Þ; jo1; jo2Þ�

mH2ð1; 1
ð2Þ; jo1; jo2Þðjo1 þ jo2Þ

2
þH2ð2; 1

ð2Þ; jo1; jo2Þ ¼ 0;

H2ð2; 1
ð2Þ; jo1; jo2Þ � kH2ð1; 1

ð2Þ; jo1; jo2Þ � a1H2ð1; 1
ð2Þ; jo1; jo2Þðjo1 þ jo2Þ

�a2H1ð1; 1
ð1Þ; jo1ÞH1ð1; 1

ð1Þjo2Þðjo1Þðjo2Þ ¼ 0:

8>><
>>: (37)

So the second-order GFRF matrix is obtained as

H2ð1; 1
ð2Þ; jo1; jo2Þ ¼ �

a2H1ð1; 1
ð1Þ; jo1ÞH1ð1; 1

ð1Þ; jo2Þðjo1Þðjo2Þ

mðjo1 þ jo2Þ
2
þ aðjo1 þ jo2Þ þ k

;

H2ð2; 1
ð2Þ; jo1; jo2Þ ¼

ma2H1ð1; 1
ð1Þ; jo1ÞH1ð1; 1

ð1Þ; jo2Þðjo1Þðjo2Þðjo1 þ jo2Þ
2

mðjo1 þ jo2Þ
2
þ aðjo1 þ jo2Þ þ k

:

8>>>><
>>>>:

(38)

Define

F0ðjo1; jo2Þ ¼
H1ð1; 1

ð1Þ; jo1ÞH1ð1; 1
ð1Þ; jo2Þðjo1Þðjo2Þ

mðjo1 þ jo2Þ
2
þ aðjo1 þ jo2Þ þ k

, (39)

the second-order GFRF matrix can be described in a more concise form as

H2ð1; 1
ð2Þ; jo1; jo2Þ ¼ �a2F0ðjo1; jo2Þ;

H2ð2; 1
ð2Þ; jo1; jo2Þ ¼ ma2ðjo1 þ jo2Þ

2F0ðjo1; jo2Þ:

(
(40)

To determine the third-order GFRF matrix

½H3ð1; 1
ð3Þ; jo1; jo2; jo3Þ; H3ð2; 1

ð3Þ; jo1; jo2; jo3Þ�,

the probing input

u1ðtÞ ¼ ejo1t þ ejo2t þ ejo3t (41)
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is used and, by taking M ¼ 2 and R ¼ 3, Eq. (28) can be written as

y1ðtÞ ¼

H1ð1; 1
ð1Þ; jo1Þe

jo1t þH1ð1; 1
ð1Þ; jo2Þe

jo2t þH1ð1; 1
ð1Þ; jo3Þe

jo3t þ 2H2ð1; 1
ð2Þ; jo1; jo2Þe

jðo1þo2Þt

þ2H2ð1; 1
ð2Þ; jo2; jo3Þe

jðo2þo3Þt þ 2H2ð1; 1
ð2Þ; jo1; jo3Þe

jðo1þo3Þt

þ6H3ð1; 1
ð3Þ; jo1; jo2; jo3Þe

jðo1þo2þo3Þt þ . . . . . .

2
64

3
75;

y2ðtÞ ¼

H1ð2; 1
ð1Þ; jo1Þe

jo1t þH1ð2; 1
ð1Þ; jo2Þe

jo2t þH1ð2; 1
ð1Þ; jo3Þe

jo3t þ 2H2ð2; 1
ð2Þ; jo1; jo2Þe

jðo1þo2Þt

þ2H2ð2; 1
ð2Þ; jo2; jo3Þe

jðo2þo3Þt þ 2H2ð2; 1
ð2Þ; jo1; jo3Þe

jðo1þo3Þt

þ6H3ð2; 1
ð3Þ; jo1; jo2; jo3Þe

jðo1þo2þo3Þt þ . . . . . .

2
64

3
75:

8>>>>>>>>>><
>>>>>>>>>>:

(42)

Substituting Eqs. (41) and (42) into Eqs. (7) and (8) for u1(t), y1(t), and y2(t), and extracting the coefficient
of ej o1þo2þo3ð Þt from the resulting expressions yield two coupled equations for ½H3ð1; 1

ð3Þ; jo1; jo2; jo3Þ;
H3ð2; 1

ð3Þ; jo1; jo2; jo3Þ�

H3ð2; 1
ð3Þ; jo1; jo2; jo3Þ �m jðo1 þ o2 þ o3Þ½ �

2H3ð1; 1
ð3Þ; jo1; jo2; jo3Þ ¼ 0;

6H3ð2; 1
ð3Þ; jo1; jo2; jo3Þ � 6kH3ð1; 1

ð3Þ; jo1; jo2; jo3Þ

�6a1H3ð1; 1
ð3Þ; jo1; jo2; jo3Þ jðo1 þ o2 þ o3Þ½ �

�4a2H1ð1; 1
ð1Þ; jo1ÞH2ð1; 1

ð2Þ; jo2; jo3Þðjo1Þðjo2 þ jo3Þ

�4a2H1ð1; 1
ð1Þ; jo2ÞH2ð1; 1

ð2Þ; jo1; jo3Þðjo2Þðjo1 þ jo3Þ

�4a2H1ð1; 1
ð1Þ; jo3ÞH2ð1; 1

ð2Þ; jo1; jo2Þðjo3Þðjo1 þ jo2Þ

�6a3H1ð1; 1
ð1Þ; jo1ÞH2ð1; 1

ð1Þ; jo2ÞH1ð1; 1
ð1Þ; jo3Þðjo1Þðjo2Þðjo3Þ ¼ 0:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(43)

Thus the third-order GFRF matrix is obtained as

H3ð1; 1
ð3Þ; jo1; jo2; jo3Þ ¼

1

mðjo1 þ jo2 þ jo3Þ
2
þ aðjo1 þ jo2 þ jo3Þ þ k

� 

�
� 2a2

3

H1ð1; 1
ð1Þ; jo1ÞH2ð1; 1

ð2Þ; jo2; jo3Þðjo1Þðjo2 þ jo3Þ

þH1ð1; 1
ð1Þ; jo2ÞH2ð1; 1

ð2Þ; jo1; jo3Þðjo2Þðjo1 þ jo3Þ

þH1ð1; 1
ð1Þ; jo3ÞH2ð1; 1

ð2Þ; jo1; jo2Þðjo3Þðjo1 þ jo2Þ

2
64

3
75

�a3H1ð1; 1
ð1Þ; jo1ÞH1ð1; 1

ð1Þ; jo2ÞH1ð1; 1
ð1Þ; jo3Þðjo1Þðjo2Þðjo3Þ

8>>>><
>>>>:

9>>>>=
>>>>;
;

H3ð2; 1
ð3Þ; jo1; jo2; jo3Þ ¼ �m jðo1 þ o2 þ o3Þ½ �

2H3ð1; 1
ð3Þ; jo1; jo2; jo3Þ:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(44)

Denote

1

3

H1ð1; 1
ð1Þ; jo1ÞH2ð1; 1

ð2Þ; jo2; jo3Þðjo1Þðjo2 þ jo3Þ

þH1ð1; 1
ð1Þ; jo2ÞH2ð1; 1

ð2Þ; jo1; jo3Þðjo2Þðjo1 þ jo3Þ

þH1ð1; 1
ð1Þ; jo3ÞH2ð1; 1

ð2Þ; jo1; jo2Þðjo3Þðjo1 þ jo2Þ

2
664

3
775 ¼

�
a2

3

H1ð1; 1
ð1Þ; jo1ÞF0ðjo2; jo3Þðjo1Þðjo2 þ jo3Þ

þH1ð1; 1
ð1Þ; jo2ÞF 0ðjo1; jo3Þðjo2Þðjo1 þ jo3Þ

þH1ð1; 1
ð1Þ; jo3ÞF 0ðjo1; jo2Þðjo3Þðjo1 þ jo2Þ

2
664

3
775 ¼ �a2F1ðjo1; jo2; jo3Þ, ð45Þ
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where

F1ðjo1; jo2; jo3Þ ¼
1

3

H1ð1; 1
ð1Þ; jo1ÞF 0ðjo2; jo3Þðjo1Þðjo2 þ jo3Þ

þH1ð1; 1
ð1Þ; jo2ÞF 0ðjo1; jo3Þðjo2Þðjo1 þ jo3Þ

þH1ð1; 1
ð1Þ; jo3ÞF 0ðjo1; jo2Þðjo3Þðjo1 þ jo2Þ

2
64

3
75

and define

F2ðjo1; jo2; jo3Þ ¼ H1ð1; 1
ð1Þ; jo1ÞH1ð1; 1

ð1Þ; jo2ÞH1ð1; 1
ð1Þ; jo3Þðjo1Þðjo2Þðjo3Þ. (46)

Substituting these results into Eq. (44) yields

H3ð1; 1
ð3Þ; jo1; jo2; jo3Þ ¼

1

bðjo1 þ jo2 þ jo3Þ

a2
2F 1ðjo1; jo2; jo3Þ � a3F 2ðjo1; jo2; jo3Þ

� 
;

H3ð2; 1
ð3Þ; jo1; jo2; jo3Þ ¼

�m jðo1 þ o2 þ o3Þ½ �
2

bðjo1 þ jo2 þ jo3Þ

a2
2F 1ðjo1; jo2; jo3Þ � a3F 2ðjo1; jo2; jo3Þ

� 
;

8>>>>>>>><
>>>>>>>>:

(47)

where bðjo1 þ jo2 þ jo3Þ ¼ mðjo1 þ jo2 þ jo3Þ
2
þ a1ðjo1 þ jo2 þ jo3Þ þ k

� 
.

Eqs. (34), (40) and (47) give the system GFRF matrices up to third order. Notice that F0(.,.), F1(.,.,.),
F2(.,.,.), and b(.) only depend on m, a1, k, the parameters which describe the system linear characteristics.
Therefore, given the system linear characteristics, Eqs. (40) and (47) explicitly reveal how the second and
third order GFRF matrices depend on the parameters a2 and a3 of the system nonlinear damping
characteristic.

Following the same principle, the GFRF matrices of the system (2) and (3) up to any higher order can be
determined and represented in terms of the nonlinear damping parameters a2 and a3. However considerable
symbolic computations are involved, and the results may consist of equations of several pages. Under the
condition of a3 ¼ 0, the fifth-order GFRF H5(2,1

(5); jo1,y,jo5) of the system (2) and (3) has been determined
for this study. The specific expression of this higher order GFRF is omitted here due to space limitations, but
the result will be used in the next section to obtain a more accurate description for the system output frequency
response.
4.3. The effects of system nonlinearity on the output frequency response

The expressions for the system GFRF matrices in terms of the nonlinear damping characteristic parameters
a2 and a3 can now be used to derive an expression for the output spectrum Y2(jo). Substituting Eqs. (40) and
(47), and the expressions for higher order GFRFs, as required, into Eq. (18) for H2 ð2; 1

ð2Þ; jo1; jo2Þ,
H3ð2; 1

ð3Þ; jo1; jo2; jo3Þ, and Hnð2; 1
ðnÞ; jo1; . . . ; jonÞ, n43, yields

Y 2ðjoÞ ¼
XN

n¼1

1

2n

X
ok1
þ...þokn¼o

Hn 2; 1ðnÞ; jok1
; . . . ; jokn

� �
Aðok1

Þ . . .Aðokn
Þ

¼
1

2
H1ð2; 1

ð1Þ; joÞAðoÞ þ
1

22

X
ok1
þok2

¼o

H2 2; 1ð2Þ; jok1
; jok2

� �
Aðok1

ÞAðok2
Þ

þ
1

23

X
ok1
þok2

þok3
¼o

H3 2; 1ð3Þ; jok1
; jok2

; jok3

� �
Aðok1

ÞAðok2
ÞAðok3

Þ þ . . .
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¼
1

2
H1ð2; 1

ð1Þ; joÞAðoÞ þ
ma2ðjoÞ

2

22

X
ok1
þok2

¼o

Aðok1
ÞAðok2

ÞF0ðjok1
; jok2
Þ

�
mðjoÞ2a2

2

23bðjoÞ

X
ok1
þok2

þok3
¼o

F1ðjok1
; jok2

; jok3
ÞAðok1

ÞAðok2
ÞAðok3

Þ

þ
mðjoÞ2a3

23bðjoÞ

X
ok1
þok2

þok3
¼o

F2ðjok1
; jok2

; jok3
ÞAðok1

ÞAðok2
ÞAðok3

Þ þ . . .

¼ p1ðjoÞ þ p2ðjoÞa2 � p3ðjoÞa
2
2 þ p4ðjoÞa3 þ . . . ð48Þ

where

p1ðjoÞ ¼
1

2
H1ð2; 1

ð1Þ; joÞAðoÞ,

p2ðjoÞ ¼
mðjoÞ2

22

X
ok1
þok2

¼o

Aðok1
ÞAðok2

ÞF 0ðjok1
; jok2
Þ,

p3ðjoÞ ¼
mðjoÞ2

23bðjoÞ

X
ok1
þok2

þok3
¼o

F1ðjok1
; jok2

; jok3
ÞAðok1

ÞAðok2
ÞAðok3

Þ;

p4ðjoÞ ¼
mðjoÞ2

23bðjoÞ

X
ok1
þok2

þok3
¼o

F2ðjok1
; jok2

; jok3
ÞAðok1

ÞAðok2
ÞAðok3

Þ:

Note that pi(jo), i ¼ 1; 2; 3; 4, depend on the applied multi-tone input and the parameters which describe the
linear characteristics of the system but are independent of a2 and a3.

Equation (48) is a very important result which describes the relationship between the system frequency
response and the characteristic parameters of the system nonlinearity. As far as we are aware, little effort if
any has previously been made to arrive at such an explicit description for this relationship. The result extends
the fundamental analytical relationship between the linear characteristic parameters and the output frequency
response to the nonlinear case for the system (2) and (3) when the system is subject to a multi-tone input, and
can be further extended to other general situations.

If a2 ¼ a3 ¼ 0 in Eq. (48), then the system reduces to a simple linear sdof spring and damper system, and

Y 2ðjoÞ ¼ p1ðjoÞ ¼
1

2
H1ð2; 1

ð1Þ; joÞAðoÞ ¼
ða1jo1 þ kÞ

2 mðjo1Þ
2
þ a1jo1 þ k

� �AðoÞ: (49)

Eq. (49) reveals the explicit analytical relationship between the system output frequency response and the
linear characteristic parameters m, a2, and k for the applied multi-tone input. This relationship is well-known
and is used in analysis and design of linear sdof spring and damper systems.

In the case of nonlinear systems for example when a26¼0 and/or a36¼0, it has generally been believed that the
relationship between the system output frequency response and the system characteristic parameters will always be
very complicated. Researchers and engineers therefore tended to rely on numerical analysis, rather than analytical
studies, to investigate the effects of system parameters on the output frequency response. Eq. (48), however, shows
that the analysis of the nonlinear sdof system described by Eqs. (2) and (3) can be achieved in two steps. At the first
step, the analysis of the effects of the system linear characteristic parameters on the output frequency response is
conducted based on Eq. (49). This can be achieved in the case where the system is excited by an input with a low
amplitude such that the system operates only over the linear regime. Secondly, the analysis of the effects of the
system nonlinear characteristic parameters on the output frequency response is performed based on a truncated
representation of Eq. (48) with fixed linear characteristic parameters. This covers the operating scenarios where the
system works under a regime where the truncated representation is valid or approximately valid. The first step is
straightforward and is the same as the widely applied linear system analysis approach. The second step allows the
nonlinear analysis to be completed based on the explicit analytical expression given in Eq. (48). These results allow
the frequency domain design of nonlinear systems to be performed in a totally new and systematic manner. This
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will be studied in more detail in a later publication. In the following analysis, however, the emphasis will be on
studying how well a truncated representation of Eq. (48) can be used to represent the effects of the nonlinear
characteristic parameters a2 and a3 on the system output spectrum.

For a given multi-tone input and the linear characteristic parameters m, a1, k, pi(jo) i ¼ 1; 2; 3; 4 in Eq. (48)
are known functions of frequency o. Eq. (48) indicates that at each frequency component the system output
spectrum is a polynomial function of the nonlinear damping characteristic parameters a2 and a3.

When the system is subject to the harmonic input (6), and the output frequency of interest in the analysis is
the same as the input frequency O, pi(jo) i ¼ 1; 2; 3; 4 can be written as

p1ðjOÞ ¼
1

2
H1ð2; 1

ð1Þ; jOÞAðOÞ, (50)

p2ðjOÞ ¼ 0, (51)

p3ðjOÞ ¼
O6m H1:1

1 ðjOÞ
�� ��2H1:1

1 ðjOÞ
2bðjOÞbð2jOÞ

AðOÞ
�� ��2AðOÞ, (52)

p4ðjOÞ ¼ �
3jO5m H1ð1; 1

ð1Þ; jOÞ
�� ��2H1ð1; 1

ð1Þ; jOÞ

23bðjOÞ
AðOÞ
�� ��2AðOÞ. (53)

Consider two relatively simple cases to illustrate the basic ideas. In the first case, a3 will be assumed to be
zero and a truncated representation of Eq. (48) which includes system nonlinearities up to fifth order is used to
describe the frequency response of the system (2) and (3) to the harmonic input (6). In the second case, the
effects of both a2 and a3 on the system output frequency response to the harmonic input are studied assuming
that a truncated representation of Eq. (48) with system nonlinearity up third order can be used to describe the
system response. The results show how the damping characteristic parameters a2 and a3 analytically determine
the system output frequency response, and to what extent an analytical expression can be used to conduct
system analysis and design.

For the first case, by considering the effects of system nonlinearities up to fifth order, Eq. (48) can be written
as

Y 2ðjOÞ ¼
X5
n¼1

1

2n

X
ok1
þ...þokn¼O

A ok1

� �
. . .A okn

� �
Hnð2; 1

ðnÞ; jok1
; . . . ; jokn

Þ

¼ p1ðjOÞ þ p2ðjOÞa2 � p3ðjOÞa
2
2

þ
1

25

X
ok1
þ...þok5

¼O

Aðok1
Þ . . .A ok5

� �
H5ð2; 1

ð5Þ; jok1
; � � � ; jok5

Þ. ð54Þ

The last term in Eq. (54) represents the effect on the output response of the fifth order system nonlinearity
and can be further expressed as

1

25

X
ok1
þ...þok5

¼O

Aðok1
Þ . . .A ok5

� �
H5ð2; 1

ð5Þ; jok1
; . . . ; jok5

Þ

¼
1

25
A Oð Þ
�� ��4A Oð Þ

X
H5ð2; 1

ð5Þ; :Þ ð55Þ

where

X
H5ð2; 1

ð5Þ; :Þ ¼

H5ð2; 1
ð5Þ;�jO; jO; jO; jO;�jOÞ þH5ð2; 1

ð5Þ;�jO; jO; jO;�jO; jOÞ

þH5ð2; 1
ð5Þ;�jO; jO;�jO; jO; jOÞ þH5ð2; 1

ð5Þ;�jO;�jO; jO; jO; jOÞ

þH5ð2; 1
ð5Þ; jO; jO; jO;�jO;�jOÞ þH5ð2; 1

ð5Þ; jO; jO;�jO; jO;�jOÞ

þH5ð2; 1
ð5Þ; jO; jO;�jO;�jO; jOÞ þH5ð2; 1

ð5Þ; jO;�jO; jO; jO;�jOÞ

þH5ð2; 1
ð5Þ; jO;�jO; jO;�jO; jOÞ þH5ð2; 1

ð5Þ; jO;�jO;�jO; jO; jOÞ

2
6666664

3
7777775. (56)
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An analytical expression for H5(2,1
(5);jo1,y,jo5) in terms of the damping characteristic parameter a2 has

been derived using the probing method. This expression is quite long and will not be given here to save space.
However, from this complicated analytical expression, the summation of

P
H5ð2; 1

ð5Þ; :Þ can be expressed in a
very compact form as

X
H5ð2; 1

ð5Þ; :Þ ¼
a4
2mO10

b4ðOÞb2 �Oð Þb 2Oð Þ

32

b Oð Þb 2Oð Þ
�

48

b 3Oð Þb �2Oð Þ

þ
48

bð3OÞb 2Oð Þ
þ

16

bð�OÞb �2Oð Þ

2
6664

3
7775 (57)

Therefore, in this case, the analytical expression for the system output frequency response is given as

Y 2ðjOÞ ¼ p1ðjOÞ � p3ðjOÞa
2
2 þ p5ðjOÞa

4
2, (58)

where p1(jO) and p3(jO) are as defined in Eqs. (50) and (52), and

p5ðjOÞ ¼
mO10 A Oð Þ

�� ��4A Oð Þ

25b4ðOÞb2 �Oð Þb 2Oð Þ

32

b Oð Þb 2Oð Þ
�

48

b 3Oð Þb �2Oð Þ

þ
48

bð2OÞb 3Oð Þ
þ

16

bð�OÞb �2Oð Þ

2
6664

3
7775. (59)

For the second case, by ignoring all terms contributed by nonlinear effects higher than third order, Eq. (48)
can be written as

Y 2ðjOÞ ¼ p1ðjOÞ � p3ðjOÞa
2
2 þ p4ðjOÞa3, (60)

where p1(jO), p3(jO) and p4(jO) are as defined in Eqs. (50), (52), and (53).
Simulation studies will be conducted in the next section for the system (2) and (3) to evaluate the output

frequency response to the harmonic input (6) for different values of a2 and a3. The results will then be
compared with the output spectrum Y2(jO) determined using Eq. (58) or (60). The objective is to verify the
effectiveness of the theoretically derived analytical relationships and to show the potential of using these
relationships in system analysis and design.

5. Simulation studies

Consider the system (2) and (3) subject to the harmonic input (6). Take the system linear characteristic
parameters m and k to be m ¼ 240 kg and k ¼ 16 000N=m with two choices for the linear damping parameter
of a1 ¼ 2960 sN=m and a1 ¼ 1960 sN=m, respectively. For a range of nonlinear damping parameters of a2 and
a3, the system was simulated to generate the output frequency response Y2(jO). This was then compared with
the analytical result from Eq. (58) or (60) for the following five cases:
(i)
 O ¼ 8:1 rad=s, Fd ¼ 80N, a3 ¼ 0, a2a0;

(ii)
 O ¼ 8:1 rad=s, Fd ¼ 100N, a3 ¼ 0, a2a0;

(iii)
 O ¼ 10 rad=s, Fd ¼ 100N, a3 ¼ 0, a2a0;

(iv)
 O ¼ 10 rad=s, Fd ¼ 120N, a3 ¼ 0, a2a0;

(v)
 O ¼ 8:1 rad=s, Fd ¼ 100N, a3a0, a2a0;
Figs. 2 and 4 show the results for cases (i) and (ii) for a1 ¼ 2960 sN=m and a1 ¼ 1960 sN=m, respectively.
Figs. 3 and 5 show the results for cases (iii) and (iv) for the same two different choices of a1.

Fig. 6(a) and (b) show the analytically determined output spectrum for case (v) for a1 ¼ 1960 sN=m and
a1 ¼ 2960 sN=m, respectively. Fig. 7(a) and (b) show a comparison of the analytically determined output
spectra with the simulation results for case (v) for the same two choices of a1, and for a2 ¼ �20000 s

2 N=m2

and a2 ¼ 0, respectively.
Notice that 2 Y 2ðjOÞ

�� �� not Y 2ðjOÞ
�� �� is used to show the output spectrum. This is because 2 Y 2ðjOÞ

�� �� represents
the physical magnitude of the system output y2(t) at frequency O.
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Fig. 2. The effect of the nonlinear damping characteristic parameter a2 on the system output frequency response when O ¼ 8:1 rad=s,
a1 ¼ 2960 sN=m, and a3 ¼ 0. Solid lines: analytically determined results using nonlinear terms up to fifth order; dashed lines: analytically

determined results using nonlinear terms up to third order; circles: simulation results.
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Fig. 3. The effect of the nonlinear damping characteristic parameter a2 on the system output frequency response when O ¼ 10 rad=s,
a1 ¼ 2960 sN=m, and a3 ¼ 0. Solid lines: analytically determined results using nonlinear terms up to fifth order; dashed lines: analytically

determined results using nonlinear terms up to third order; circles: simulation results.

Z.Q. Lang et al. / Journal of Sound and Vibration 295 (2006) 584–601596
In Figs. 2–5, the solid lines show the magnitude of the output spectrum 2Y2(jO) determined using the
analytical description (58) over a range of values of a2 when the system nonlinear effects up to fifth order (all
terms in Eq. (58)) are taken into account. The dashed lines show the results determined from Eq. (58) when
only the system nonlinearity up to third order (just first two terms in Eq. (58)) is considered. The circles show
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Fig. 5. The effect of the nonlinear damping characteristic parameter a2 on the system output frequency response when O ¼ 10 rad=s,
a1 ¼ 1960 sN=m, and a3 ¼ 0. Solid lines: analytically determined results using nonlinear terms up to fifth order; dashed lines: analytically

determined results using nonlinear terms up to third order; circles: simulation results.
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Fig. 4. The effect of the nonlinear damping characteristic parameter a2 on the system output frequency response when O ¼ 8:1 rad=s,
a1 ¼ 1960 sN=m, and a3 ¼ 0. Solid lines: analytically determined results using nonlinear terms up to fifth order; dashed lines: analytically

determined results using nonlinear terms up to third order; circles: simulation results.
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the results of the spectrum over a set of discrete values of a2, representing the numerical simulation results of
the output spectrum, and obtained by performing a FFT operation on the system time domain output y2(t). In
each of the four diagrams, the output spectra for two different input magnitudes are presented to show the
effect of the magnitude of the harmonic input on the analytical description for the output spectrum. These
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results reflect how the magnitude of the system output spectrum changes with the nonlinear damping
characteristic parameter a2, and how the analytically determined system output frequency responses match the
simulation results over a considerable range of values of a2 under the conditions of different linear damping
parameters a1, different harmonic input frequencies O, and different input magnitudes Fd.

Inspection of Figs. 2–5 indicates that the system output frequency response analytically determined from
Eq. (58) using nonlinear terms up to third can represent the real system output spectrum well over a certain
range of values of a2, and including the fifth order nonlinear terms into the analytical expression can
considerably improve the accuracy of the analytically determined results. It can also be observed from these
figures that the improvement due to taking higher order nonlinear terms into account is more significant when
the system is subject to an input with a greater input magnitude.

Comparing Figs. 2 and 4, or Figs. 3 and 5 shows the effect of the linear damping parameter a1 on the
accuracy of the analytical expression (58) for the output spectrum. When the linear damping parameter a1 is
increased from a1 ¼ 1960 to 2960 sN=m, the same harmonic force input produces a smaller output force
response at the input frequency, a less considerable variation of output force magnitudes can be observed over
the same range of variation of a2, and the range of a2, over which the analytical expression (58) for the output
spectrum can well describe the true output spectrum, becomes greater.

Comparing Figs. 2 and 3, or Figs. 4 and 5 shows the effect of the frequency O of the applied harmonic input
on the accuracy of the analytical expression (58) for the output spectrum. When O changes from O ¼ 8.1 up to
10 rads/s, it can be observed that the analytical expression (58) becomes more accurate. This is because
O ¼ 10 rads=s is farther from the resonant frequency of 8.16 rad/s of the system than O ¼ 8:1 rads=s. The
nonlinear effects of the system are less significant when subject to a harmonic input farther away from the
resonant frequency. In contrary, the nonlinear effects of the system are more significant when the input is
closer to the resonant frequency. Consequently system nonlinearities higher than fifth order may be needed to
more accurately represent the case for O ¼ 8:1 rads=s.

Figs. 6 and 7 show the results regarding the derived analytical expression (60) for the system output
spectrum. Phenomena similar to the ones that can be observed from Figs. 2–5 can be observed. System
nonlinear effects become more significant when a1 is reduced from a1 ¼ 2960 s to 1960 sN=m, and a2 is
changed from a2 ¼ 0 to � 20 000 s2 N=m2. For this case, Fig. 7(a) indicates that higher order system
nonlinearities should be considered in the analytical expression (60) to achieve a more accurate description.
However, nonlinear effects become less significant when either a1 is increased from a1 ¼ 1960 to 2960 sN=m,
or a2 is changed from a2 ¼ �20 000 s

2 N=m2 to a2 ¼ 0. Consequently, for the three cases of a1 ¼ 2960 sN=m,
a2 ¼ 20 000 s2 N=m2; a1 ¼ 1960 sN=m, a1 ¼ 0; and a1 ¼ 2960 sN=m, a1 ¼ 0; Fig. 7 indicates that the
analytical expression (60), which only includes nonlinearities up to third order, is sufficient to accurately
represent the system output frequency response.
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Fig. 6. The analytically determined relationship between the nonlinear damping characteristic parameters a2, a3 and the system output

frequency response when O ¼ 8:1 rad=s and F d ¼ 100N: (a) for the case of a1 ¼ 1960 sN=m: (b) for the case of a1 ¼ 2960 sN=m.
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Overall, the results in Figs. 2–7 verify the theoretical analysis in the previous sections and demonstrate the
effectiveness of the analytical descriptions (58) and (60) for the output frequency response. The analytical
expressions describe the system output spectra quite well over a considerable range of values of damping
parameters a2 and a3, for different linear damping parameters, and for different harmonic inputs.
Similar results have also been obtained for different mass m’s and stiffness k‘s, but are omitted here due to
page limitations. The improvements achieved by considering the effects of fifth order nonlinear terms, as
illustrated in Figs. 2–5, show the potential of producing accurate results if higher order terms are taken into
account.

The analytical expressions can be used to design the damping characteristic parameters. Given a desired
output frequency response, which can be realised within the range of the parameters where the analytical
expressions are valid, the values of the parameters which cause the system output to reach the desired response
can be determined from the expressions via an optimisation procedure.

All the derivations in the present study assume that the system under study can be described by the Volterra
series model (15) and (16) under the defined operating conditions and over the range of parameter variations
discussed. Volterra series can be used to represent the class of fading memory nonlinear systems [28]. This
excludes systems which exhibit subharmonics and chaos, but includes the wide class of engineering systems
that generate harmonics and intermodulation effects.
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6. Conclusions

An analytical expression showing the effects of system nonlinearities on the output frequency response of a
sdof spring damper system has been investigated. The relationship between the output frequency response and
the nonlinear damping characteristic parameters has been derived for the system. The derivations are based on
the frequency domain analysis of nonlinear systems. Results from simulation studies have been used to verify
the theoretical analysis and to demonstrate the effectiveness of the derived relationship.

The basic ideas of this work can be extended to general situations to arrive at a comprehensive analytical
description for the relationship between nonlinear system output frequency responses and model parameters
provided that the system behaviours can be described by a Volterra series model under the considered
operating conditions. As demonstrated in the present study, this analytical relationship can be very powerful
and can be used to considerably facilitate the analysis and design of a wide range of nonlinear engineering
systems and structures.
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